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ABSTRACT

A convex body is said to have constant diagonal if and only if the main
diagonal of the circumscribed boxes has constant length. It is shown that
an n-dimensional convex body, n = 3, is t he affine image of a body of constant
breadth if and only if it has constant diagonal. Affine images of bodies of
constant breadth are also characterized by the property that the orthogonal
projection on each hyperplane is the affine image of a body of constant
breadth in that hyperplane.

A convex body in n-dimensional Euclidean space E, is a compact, convex
subset with non-empty interior. A convex body has ‘‘constant breadth’ if the
distance between parallel supporting hyperplanes is constant. A set K’ is the
““affine image”” of K if there exists an affine transformation f: E, — E, such that
f(K) = K’. A rectangular parallelopiped will be referred to as a ““box’’. A convex
body has ‘‘constant diagonal’’ if the main diagonal of the circumscribed boxes has
constant length.

In this paper we are concerned with characterizing affine images of bodies of
constant breadth, a problem raised by S.K. Stein. Our main theorem is,

TueoreM 1. In E,, n 23, a convex body is the affine image of a body of
constant breadth if and only if K has constant diagonal.
We shall also prove a related theorem,

THEOREM 2. In E,, n =3, a convex body is the affine image of a body of
constant breadth if and only if its orthogonal projection on each hyperplane is
the affine image of a body of constant breadth in that hyperplane.

The proofs of these theorems depend on the following lemmas.

LemMA 1. InE, n =2, a convex body is the affine image of a body of cons-
tant breadth if and only if K+ (— K) is an ellipsoid.

Proof. This follows immediately from the observation that K is a body of
constant breadth if and only if K + ( — K) is spherical.
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LemMA 2. In E,, n=3 a convex body is an ellipsoid if and only if its
orthogonal projection on, eachhyperplane is an ellipsoid in that hyper-
plane.

Proof. If K is an ellipsoid, then all its orthogonal projections are ellipsoids.
The following proof of the converse is an adaptation of the proof given by Siiss
[3] for the case of E;. Now suppose each orthogonal projection of K is an ellipsoid.
Then each supporting hyperplane of K intersects K in just one point. Denoting
the points of E, by x = (xy, -, X,), assume that the segment joining a = (0, ---,0,1)
to a’ =(0,:--,0, — 1) is a maximum diameter of K. Then the hyperplanes x, = 1
and x, = — 1 are supporting hyperplanes of K. Let K* be the orthogonal projection
of K on the hyperplane x; = 0. Then K* is an ellipsoid in x; =0. aa’ is one
axis of K*, since the intersections of x, =1 and x,= —1 with x, =0 are sup-
porting (n — 2)-planes of K*, orthogonal to aa’ and passing through a and a’
respectively. Let H be a supporting hyperplane of K which is orthogonal to x; = 0.
Then H intersects x, =0 in H*, where H* is a supporting (n — 2)-plane of K*.
If, in particular, H is also chosen parallel to aa’, then H* is parallel to aa’, and
hence H* N K*liesin x, = 0.Itfollows that H N Kliesin x, = 0. But this argument
could have been applied to any supporting hyperplane parallel to aa’; hence,
any supporting hyperplane parallel to aa’ intersects K in a point lying in x, = 0.
From this it follows that the intersection of K with x, =0 is identical with its
orthogonal projection on x, =0, which is an ellipsoid K**. It is easy to show
that K** must be centered at the origin, Now let f: E, — E, be an affinity which
keeps aa’ fixed and maps K** onto a sphere S in x, = O centered at the origin.
Then f(K) intersects x,, = 0 in the sphere S. Each diameter of S is orthogonal to
the supporting hyperplanes of f(K) through its endpoints. Also, x, = 1 and x, = — 1
are supporiing hyperplanes of f(K), orthogonal to aa’ and passing through a and
a’ respectively. Finally, all the orthogonal projections of f(K) are ellipsoids
(here one needs to use the fact that not only the orthogonal projections, but all
projections, of K are ellipsoids). In the argument above, the only property of aa’
we actually used was that the supporting hyperplanes through a and a’ were
orthogonal to aa’. From this it followed that the hyperplane through the origin
orthogonal to aa’ intersected K in an ellipsoid. Thus if bb’ is any diameter of S,
the same arguments can be applied to show that the hyperplane through the
origin orthogonal to bb’ intersects f(K) in an ellipsoid; moreover, this ellipsoid
has aa’ as an axis. It follows that every 2-plane containing aa’ intersects K in an
ellipse having aa’ as one axis and a diameter of S as the other. Thus
f(K) is an ellipsoid of revolution, and K is an ellipsoid. This completes
the proof.

LemMA 3. In E,, n 23, a convex body is an ellipsoid if and only if all its
circumscribed boxes have their vertices on a fixed sphere.



1965] IMAGE OF A CONVEX BODY OF CONSTANT BREADTH 21

Proof. The sufficiency of the condition is proved, for n = 3, in [1]. We proceed
to the general case by induction. Suppose K is a convex body in E,, n > 3, all of
whose circumscribed boxes have their vertices on a fixed sphere S, and assume
we know the lemma for E,, 3 £ k < n. Let H be any supporting hyperplane of K,
and let K* be the orthogonal projection of K on H. Then any box B* in H cir-
cumscribed about K* is a face of a box B circumscribed about K. The vertices
of B lie on S; hence, the vertices of B* lie on the sphere S n H. Thus K* is an
ellipsoid in H. It follows that the orthogonal projection of K on any hyperplane
is an ellipsoid, so by Lemma 2, K is an ellipsoid. The result follows, for all n, by
induction. The converse, namely that all circumscribed boxes of an ellipsoid have
their vertices on a fixed sphere, is a simple matter of analytic geometry. This
completes the proof.

Proof of Theorem 1. 1. Let S*”! be the unit sphere centered at the origin in E,.
A ““direction’ in E, is a point ue S"~". N ow suppose K is the affine image of a
body of constant breadth, so K 4+ ( — K) is an ellipsoid E centered at the origin.
Let p(u) be the support function of E measured from the origin, and let b(u) be
the breadth function (distance between parallel supporting hyperplanes ortho-
gonal to direction u) of K. Then p(u) = b(u) for all directions u. But if u,u,,-,u,
are any n mutually orthogonal directions, then 27 [p(u)]? is constant, by
Lemma 3. Hence, 2/_;[b(u;)]? is constant, which is precisely the condition that K
have constant diagonal. Conversely, if K has constant diagonal, then 27, [b(u;)]?
is constant, so X,-';,[p(u,-))]z is constant, where p(u) is the support function of
K + (= K). Thus all the boxes circumscribed about K 4+ ( — K) have their
vertices on a fixed sphere. By Lemma 3, K + ( — K) is an ellipsoid, so K is the
affine image of a body of constant breadth. This completes the proof of the
theorem.

Proof of Theorem 2. For each direction u let E, be the hyperplane through
the origin orthogonal to u. Let K, be the orthogonal projection of K on E,. If K
is the affine image of a body of constant breath, then K + ( — K) is an ellipsoid.
Hence, [K + (- K)], = K, + (—K,) is an ellipsoid in E,, so K, is the affine
image of a body of constant breadth in E,. Conversely, suppose K, is the affine
image of a body of constant breadth in E,, for each u. Then [K + ( — K)},
=K, +(—K,) is an ellipsoid in E, for each u. By Lemma 2, K + ( ~ K) is an
ellipsoid, so K is the affine image of a body of constant breadth. This completes
the proof.

REMARK. An interesting characterization of affine images of curves of constant
breadth in E, is to be desired. While Theorem 1 is true in one direction in the
plane case, viz. an affine image of a curve of constant breadth has constant diagonal,
the converse is false. Blaschke, in [2], gives examples of centrally symmetric
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convex curves with constant diagonal which are not ellipses. Such a curve could
not be the affine image of a curve of constant breadth, since the only centrally
symmetric curve of constant breadth is the circle.
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